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lAMINAR BOUNDARY LAYER BEHIND A STRONG SHOCK MOVING INTO AIR

By Harold Mirels

SLMMARY

The laminar wall boundary layer behind a strong shock advancing into

stationary air has been determined. Numerical results have been obtained

for shock Mach numbers up to i_ using real gas values for density and

viscosity and assuming Prandtl and Lewis numbers of 0.72 and i, respec-

tively. The numerical results for shear and heat transfer agree, within

4 percent, with a previously presented approximate analytic_l expression

for these quantities. A slight modification of this expression results

in agreement with the numerical data to within 2.5 percent. Analytical

expressions for boundary-layer thickness and displacement thickness, cor-

rect to within 4 percent for the present data, have also been obtained.

INTRODUCTION

Until 1957, all studies of the compressible laminar wall boundary

layer behind a moving shock had assumed that the product of viscosity

times density pW was constant throughout the boundary layer (e.g.,

refs. i to 5). This assumption becomes less valid as shock strength

increases. Consequently a study was undertaken, at that time, to

evaluate the effect of variable p_ on the laminar boundary behind a

strong shock moving into air. Real gas properties (ref. 6) were used.

The boundary layer was assumed to be in thermodynamic equilibrium, and

the Lewis number was assumed to be i. Shock Mach numbers from 4 to 14

were considered.

The initial phase of the investigation was for a Prandtl number of

i. Numerical results for shear and heat transfer were reported in ref-

erence 7. Analytical expressions were used therein which correlated the

shear and heat-transfer data to within 3 percent. The analytical expres-

sions were generalized (by comparison with constant DW solutions) to

account for Prandtl number not equal to i, but the validity of this

generalization was not established.



The second phase of the investigation was for a Prandtl numberof
0.72. Numerical results were obtained prior to the spring of 1958.
These results were not published at that time in the hope that more ex-
tensive data would be obtained. However, the press of other research
projects prevented the continuation of the study. Recent informal dis-
cussions with Dr. R. Hartunian_ of the Cornell Aeronautical Laboratory,
and Dr. N. Kemp, of the Avco Everett ResearchLaboratory, have indicated
that the unpublished data are of current interest. In particular, the
numerical data are of interest for correlating experimental wall heat-
transfer measurementsin shock tubes and for estimating the flow non-
uniformity in low-density shock tubes. Hencethe present publication of
the data was undertaken.

The present report includes the Prandtl number i data previously
reported in reference 7, in order to makethat data more generally avail-
able. It is also shownherein that the approximate analytical expression
for shear and heat transfer, developed in reference 7, is correct to
within 4 percent for Prandtl number0.72. Finally, approximate expres-
sions are developed herein for boundary-layer thickness and displacement
thickness which agree with the numerical results for Prandtl number0.72
to within 4 percent. The latter expressions are useful for estimating
flow nonuniformity in shock tubes (e.g., refs. 8 and 9).

Numerical solutions for the wall laminar boundary layer behind strong
shocks in oxygen recently have been presented in reference i0. Real gas
properties, including the effects of Lewis numberother than i, are con-
sidered. The correlation of theoretically derived heat transfer with ex-
perimentally observed heat transfer in a shock tube (for both laminar and
turbulent cases) is also discussed therein and in reference ii. In
addition, reference I0 presents approximate analytical expressions for
shear and heat transfer which are similar to those developed in reference
7 but which include the effect of Lewis number.

The author is indebted to Richard J. Wisniewski for aid in obtaining
the boundary-layer thickness correlations of the present report.

ANALYSIS

Consider the laminar boundary layer behind a shock moving into a
stationary fluid. The problem is a steady-state one in a coordinate
system fixed with respect to the shock (fig. l(a)). In this coordinate
system the wall moveswith the shock velocity uw = Msai.
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Equations of Motion

If the boundary layer is assumed to be in thermodynamic equilibrium

with a Lewis number of i, the equations of motion for x > 0 are (e.g._
ref. 12)

oy

OU_x+__u_:__(._u)_ c_

p : z pRT (id)

where H is the local stagnation enthalpy

The other symbols are defined in the appendix. From equation (la), a

stream function exists such that

Introducing new variables

Y w

P v
OX -- - <

= X

/oy"r] = _ -e-PdYpw

(3)

(4)
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such that

_-_ +_×_

P .lUe

Zy Pw _w _

(s)

and assuming _ to have the form

_/ = _/2Ue_------_w f(1]) (s)

reduces equations (ib) and (ic) to the form

[Cf"]' + ff" = 0 (Ta)

(m)

with boundary conditions

f(O) = 0

f'(o): u

r'(-) : z

2

hw u e U 2
g(o): _ +

g(-) : z

(8)

where

u- _ , (9)
U e

H h me2 )2
g -- He -- He + _ (f'

In order to integrate equations (7), it is necessary to express C and

as functions of f and g. This is generally done by determining C

and _ as functions of h/h w (for each free-stream pressure) and noting

that



S

g -- m i

h _ 2_e (i0)
hw u_

g(O) __U2
2He

The boundary-layer quantities of interest are

_w - _ = _Ue
(lla)

= - h'(o)
%-- _

(llb)

Pw __w [G _ Z(G)]
Y=p_ ¥ Ue

(llc)

v e

u e

(lid)

wh ere

_0 G (i2)

The integral I(D ) oa.n be evaluated, after integrating equations (7), if

0/0 w is known as a function of h/h w.

For

Integration of the Energy Equation for a = i

= i, equations (7) and (8) become

[cf"]' ff"+ = 0

[Cg']' + fg' = o

f(o) = o g(O) : _w/_e "]

f'(o)= m g(_)= i

f'(_)= i

(15a)

(15b)

(13c)



Equation (13b) can be integrated to yield

g - g(o): _ (1 - g(O)) (14)

which is a form of the Crocco relation between velocity and stagnation

enthalpy. If g(O) = l, then

g : i (15)

so that the stagnation enthalpy is constant across the boundary layer.

Recall that in a shock fixed coordinate systemj stagnation enthalpy is

conserved across the shock wave. It can then be shown that g(0) = i

provided hw = h I. The latter relation is approximately valid in the

shock tube because the relatively high heat capacity and conductivity of

the wall tends to maintain the wall at its original temperature (e.g.,

ref. 7), and the pressure effect on enthalpy is small. When equation

(15) applies, h'(0) _ 0 and there is heat transfer to the wall (in con-

tra distinction to the semi-infinite flat-plate problem where there is

no heat transfer for the g = 1 case).

!
_0
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Numerical Solutions

Numerical solutions of equations (7) and (8) have been obtained

which correspond to shocks of strength up to M s = 14 propagating into

air at T1 = 522 ° R and Pl = 0.001 and 0.01 atmosphere. The Runge-
Kutta method of integration was used with a step size A n = 0.02. 1 The

wall temperature was assumed to remain at 522 ° R for these calculations.

Conditions behind the shock were determined by using thermodynamic charts

for equilibrium" air (ref. 6).

In the integration of equations (7) it was assumed that _ was

constant across the boundary layer. This is reasonable in view of the

iThis step size was established for the relatively low shock Mach

number cases by decreasing the step size until the shear and heat trans-

fer results were insensitive to a further change. Since 05 decreases

with increase in shock Mach number, a further check of the validity of

this step size should have been made at M s = 14 - but this was not done.

However, Dr. Richard Hartunian, in a private communication, has stated

that he checked the effect of step size at Ms = 14 and found that

_ = 0.02 leads to accurate results for shear and heat transfer. He

also stated that the computations of reference i0 were also made with

_ = 0.02 (by error, ref. i0 notes the step size as being A_ = 0.01).



rough computations of reference 13. The following analytic expression
for C was used:

c- h--Fw+ 0. - w - (16)

Equation (16) agrees to within 3 percent (for Tw = T I = 522 ° R and the

specified ranges of Pl and Ms) with computations based on the thermo-

dynamic charts for equilibrium air and the Sutherland viscosity-

temperature relation. The thermodynamic charts provided P/Pw and T/T w

as a function of h/h w (for each specified Tw and free-stream pressure)

and C could then be found by using the Sutherland relation

198.6

1 + Tw 3/2

i+ 19s.6< ]
Tw Tw

The constants in equation (16) were chosen so that C has specified

values at h/h w = i, i0, A0 and has the correct slope at h/h w = i. As

a result, equation (16) provides an accurate representation of C for

i _ h/h w _ 42, which is the range required for the present investigation.

Equation (16) tends to underestimate C for h/h w greater than 62.

Similarly, P/Pw can be approximated by

O. 02586 h

P _ _ + 0.94828 (18)

Pw h 0.02586
h w

for the range of Pl and M s under consideration. The constants in

equation (18) were chosen so that P/Pw has specified values at

h/h w = l, i0 and has the correct slope at h/h w = i. Equation (18) is

correct to within a few percent for i < h/h w <_ 30 but is correct only

to within i0 percent for h/h w near A2. It should be remembered that

equation (18) is used only to evaluate I(_).

In order to determine the effects of Prandtl number, equations (7)

were integrated for a = 1.0 and a = 0.72. To determine the effect



of variable C, equations (7) were integrated for C = i and for C as
defined by equation (16). The results are summarizedin table I. The
results for C = i represent an extension of the results of references
2 and 3 to values of U beyond 6. The shear and heat-transfer results
for _ = i and C = equation (16) have been reported in reference 7.
The results for _ = 0.72 and C = equation (16) are new and represent
the primary numerical contribution of the present paper.

CORREL&TIONOFDATA

Reference 7 proposed that the laminar-boundary-layer shear and
heat transfer for variable C and constant a could be estimated
from

O. 29
f"(O) = -0,489-._/1 + 1.665 U CeU - 1

(19a)

0.29 o(0._8+0.022 u)h'(o) = o.489-Vl + 1.665 u ce
hr - hw

(19b)

where hr is found from

hr ue2 39-0.025 U)
--= 1 + (U - l) 2 -- 0 (0.
h e 2h e

(19c)

A comparison of equations (19a) and (19b) with the numerical results ob-

tained by integrating equations (7) is also given in table I. For

= i, equations (19a) and (19b) are correct to within I percent for C

a constant and to within 3 percent for C varying according to equation

(16). (The accuracy of eqs. (19a) and (19b), for _ = i, was previously

pointed out in ref. 7.) The present numerical solutions for o = O. 72

indicate that equations (19a) and (19b) are correct to within about 4 per-

cent for the data considered herein.

Equations (19a) and (19b) would agree with the _ = 0.72 data to

within 2.5 percent if the factor C_ "29 were replaced by C_ "265 in

these equations. The exponent 0.29 was proposed in reference 7 on the

basis of the numerical solutions for the d = i cases. The use of the

exponent 0.265 improves the correlation with the c = 0.72 data, but

at the expense of a poorer correlation of the a = i data. Since the

a = 0.72 solution is the more realistic one, for air, the exponent

0.265 should be used in equation (19b) when making estimates of the

wall heat transfer due to strong shocks moving through air.

Reference i0 obtained numerical solutions for the shear and heat

transfer associated with strong shocks moving through oxygen, assuming

I
{O

O7
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= 0.72 and different Lewis numbers. The data for Lewis number equal

to i were correlated to within i percent by equations (19a) and (19b)

with Ce raised to the 0.24 power. The difference between the ex-

ponents 0.265 and 0.24 is relatively small, considering that the

viscosity law, the shock solutions, and the real gas properties used in
reference i0 were different from those used herein.

The displacement thickness 8" in the steady coordinate system (fig.

l(a)) is of interest for computing attenuation and nonuniformities in shock

tubes (e.g., refs. 8 and 9). The displacement thickness is found from

I(_) and lim (f - _) by substituting into equation (lid]. Values for

these quantities, obtained from the numerical integration of equations

(7); are given in table I. The following approximate formula can be used
to estimate 8*:

8" _.2Ue_vw ow0e- CeO.S7[lim (D _ f ) I(_)] (20)

Lq _ JRef. 3

where

lim (q - f_
-_ Ref. 3

__1.13 (1- ul (21)
_/i-+ 1.022 U

[I(_)]Ref. S

hr hw

1.1S4 h e h e

•-_/t + 1.022 U _0.47+0.029 U

1. 69 (u- 1)2 Ue2
2he

+ o.993 cO. O_S(U-A)

(22)

Equations (21) and (22) were obtained in reference S and correlate the

constant property solutions to within i percent. The factor C_ "$7, in

equation (20), corrects these expressions for the effect of variable C.

The ratio of the value of 8*, as obtained from equation (20), to the

value of 8" obtained by numerical integration is given in table I. It

is seen that, for the cases considered herein, equation (20) is correct to
within 3 percent.

The boundary-layer thickness 6 in the unsteady (wall stationary)

coordinate system (fig. l(b)) may be defined as the value of y at whicb

the velocity relative to the wall reaches 99 percent of its free-stream

value. That is, it corresponds to



i0

or

u U- f'

_e U - i
- 0.99

f' = 0.99 + 0.01 U

(25)

J

This boundary-layer parameter is of interest, in experimental shock-tube

studies, as a measure of the extent to which the boundary layer extends
into the free stream.

The value of q corresponding to y = 5 is denoted herein by _8"

The boundary-layer thickness 5 can then be computed from equation (llc)

by using the values of _5 and I(_) given in table I. (More properly,

I(_5) should be used when computing 5 from equation (llc), but the use

of I(_) should introduce a negligible error.) The resulting values for

5 are included in table I.

The following approximate formula can be used to estimate 5:

u2_wwPe 0.48[_ 6 i(_)_Ref. 55 Pw- ce - (24)

where

= 3.20 (22)ef 3 +0.543

and I(_) is found from equation (22). (Again, I(h) has been evaluated,

for convenience_ at q = _ rather than _5" The error should be unim-

portant.) Equation (25) was found by assuming _6 to be of the form

A/_/_ + BU and determining A and B from the U = i and U = 6

constant property results of reference 3. (Eq. (25) differs slightly from

a similar formula given in appendix D of ref. 8 and is the more accurate

expression if the edge of the boundary layer is taken to be

_/_e _ 0.990.) The coefficient C_ "48, in equation (24), is the approxi-

mate correction to account for variable C. The ratio of 5, as obtained

from equation (24), to the value obtained from the numerical integration

of equations (7) is given in table I. Equation (2A) is correct to 4 per-

cent for the cases noted herein.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, December 7, 1960
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APPENDIX - SYMBOLS

local speed of sound

function of _ defined by eq. (6)

H/H e

stagnation enthalpy in shock stationary coordinate system

static enthalpy

integral defined by eq. (12)

Mach number of the shock

pressure

heat-transfer rate

gas constant

absolute static temperature

 /Ue

velocities parallel to x,y axis

velocities parallel to x_y axis

velocity of shock in x,y coordinate system

velocity of wall in x,y coordinate system

steady coordinate system (fig. l(a))

unsteady coordinate system (fig. l(b))

molecular weight ratio

fluid velocity - boundary-layer thickness (value of y corres-

ponding to _l_e _ (u - uw)l(u e - uw) = 0.99)

fluid-boundary-layer displacement thickness in steady coordinate

system, _ _ 0u _dy
PeUeJ
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_8

P

T_

similarity parameter, eq. (4)

value of _ corresponding to y =

coefficient of viscosity

kinematic viscosity

function defined by eq. (4)

mass density

Prandtl number

local shear stress exerted by fluid on wall

stream function, eq. (3)

Subscripts:

e

r

w

i

flow external to fluid boundary layer

quantity evaluated for zero heat transfer

quantity evaluated at the wall

undisturbed flow ahead of shock

Superscript:

t denotes differentiation with respect to
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us = uw

y_v

Shock

wave m e

u w

(a) Steady coordinate system.

m --

y _v

_--_ X_LI

__r-Shock

_ IV wave

(b) Unsteady coordinate system.

Figure 2. - Coordinate systems used to study boundary layer behind a
shock wave advancing into a stationary fluid.
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